清洁度分析仪,清洁度检测仪设备,国内专业的清洁度检测设备,高端金相分析设备制造商之一。无锡进口清洁度检测设备,苏州西恩士自动金相切割机,专业服务好的进口金相切割机品牌
免费服务热线 4008-502-022
技术与应用
基础知识
您现在的位置:首页 >> 技术与应用 >> 基础知识

金相分析技术

作者:Nova 来源:SIENCE 日期:2014-3-19 14:06:07 人气:2047

金相技术是材料科学与工程领域最广泛应用的、易行有效的研究和检验方法,金相检验则是各国和ISO国际材料检验标准中的重要物理检验项目类别.但随着材料研究与检验方法的不断丰富,为与其它实验手段区分,目前金相学习惯上已只取其狭义,主要指借助光学(金相)显微镜、放大镜和体视显微镜等对材料显微组织、低倍组织和断口组织等进行分析研究和表征的材料学科分支,既包含材料三维显微组织的成像(imaging)及其定性、定量表征,亦包含必要的样品制备、准备和取样方法.其观测研究的材料组织结构的代表性尺度范围为10-9-10-2m数量级,主要反映和表征构成材料的相和组织组成物、晶粒(亦包括可能存在的亚晶)、非金属夹杂物乃至某些晶体缺陷(例如位错)的数量、形貌、大小、分布、取向、空间排布状态等.当需要对不透明材料的三维显微组织进行无偏定量表征时,基于几何概率学、定量金相学和图像分析技术等发展起来的材料体视学测试技术则成为必不可少的工具.

本文将主要扼要介绍材料显微组织几何形态的定量表征与分析技术及其标准化、显微组织仿真模型、以及金相研究时应注意的材料显微组织的若干特性等内容.

金相技术、图像分析和体视学应用的标准化
美国材料试验学会(ASTM)最早确认光学显微镜是研究和检验金属材料组织的有效手段,并一直极为重视金相检测标准的制定,对世界各国(包括我国)金相标准的制定和实施产生的影响非常大.以下给出与金相检测和显微组织观察相关的一些ASTM标准供读者参考.例如,ASTM Standard E3-95为金相样品的标准制备操作规程;E7-99a为金相学标准术语;E807-96为金相实验室评估标准操作规程; E1351-96为现场金相复膜的制作和评价的标准操作规程; E1558-99为金相样品电解抛光的标准指南; E1920-97为热喷涂层金相制备的标准指南; E1951-98为标度线和光学显微镜放大倍数标定的标准指南;E2014-99为金相实验室安全标准指南; E2015-99为显微组织观察用塑料和高分子样品制备的标准指南;等等.在相应的科学研究与材料金相检测中,建议对这些标准以及本国的相应标准予以高度重视.

目前国际上已存在一系列利用体视学和图像分析方法进行材料显微组织或非金属夹杂物定量分析的标准.例如,ASTM Standard E112为确定平均晶粒尺寸的标准操作规程;E562为采用系统人工计点法确定体积分数的标准操作规程;E768为钢中夹杂物自动评定用样品的制备与测定的标准操作规程;E930为估计金相磨面上观察到的最大晶粒的标准测定方法;E1122为采用自动图像分析获得JK夹杂物级别的标准操作规程;E1181为表征双重晶粒尺寸的标准操作规程;E1245为采用自动图像分析确定钢和其它金属中夹杂物数量的标准操作规程;E1268为评定显微组织带状或取向程度的标准方法;E1382为应用半自动和自动图像分析确定平均晶粒尺寸的标准操作规程;国际标准化组织的标准ISO 9042:1988 Steels则为应用点网格人工计点法统计性测估组织组成物体积分数的标准方法;等等.鉴于我国尚缺少此类操作规程标准,建议在对材料显微组织进行定量分析研究时先行借鉴或参考上述国外或国际标准.

金相研究时应注意的材料显微组织的若干特性
在实际金相分析研究中,适当注意材料显微组织的如下特点是很有好处的,尤其有助于实验方案设计的系统性和严谨性,以及减少对表观显微组织形态的误解和不合理分析的可能性.

(1)材料显微组织结构的不均匀性:实际显微组织常常存在几何形态学上的不均匀性,化学成分的不均匀性,微观性能(如显微硬度、局部电化学位)的不均匀性等;

(2)材料显微组织结构的多尺度性:原子与分子层次,位错等晶体缺陷层次,晶粒显微组织层次,细观组织层次,宏观组织层次等;

(3)材料显微组织结构的多变性:化学组成改变,外界因素及时间变化引起相变和组织演变等均可能导致材料显微组织结构变化,从而,除需要对静态显微组织形态进行定性、定量分析外,应注意是否存在对固态相变过程、显微组织演变动力学和演变机理研究的必要;

(4)材料显微组织结构的方向性:包括晶粒形态各向异性,低倍组织的方向性,晶体学择尤取向,材料宏观性能的方向性等多种方向性,应予以分别分析和表征;

(5)材料显微组织结构可能具有的分形(fractal)特性和特定金相观测可能存在的分辨率依赖特性:可能导致其显微组织定量分析结果强烈依赖于图像分辨率,当进行材料断口表面组织形态进行定量分析以及对显微组织数字图像文件进行存储和处理时更应注意这一点;

(6)材料显微组织结构非定量研究的局限性:虽然显微组织的定性研究有时尚可满足材料工程的需求,但材料科学分析研究总是还需要对显微组织几何形态的科学进行定量测定以及对所得定量分析结果的进行误差分析(随机误差、系统误差、粗差);

(7)材料显微组织结构截面或投影观测的局限性等等.铸铁片状石墨及珠光体三维结构的深蚀观测已表明该类局限性极易导致人们对截面图像或投影图像的错误解读.

应当注意,对截面图像(如光学金相和扫描电镜图像)和投影图像(如透射电镜图像)必须采用不同的体视学原理和关系式,且投影图像的体视学分析要困难得多.

针对(6)和(7)两类局限性,深蚀法、晶粒或第二相分离法、射线照相法、立体视觉、共聚焦显微镜、原子力显微镜、场离子显微镜、显微CT及相关技术、从系列截面图像重建三维组织结构等方法均曾被用于材料三维显微组织的直接成像与实验观测.但大多数或仅适用于极特殊情况,或工作量极大,或只能对样品表面成像和观测.其中,工业显微CT 技术对材料内部具有

明显密度差异的较大尺寸缺陷的无损检测很有效,有可能成为一个新的研究发展方向,但用于材料显微组织结构的观测时分辨率尚待提高.当有可能实验获取系列截面金相图像时,三维重建和计算机仿真技术对于三维直接观察则很有帮助.另外,直接观察并不总是意味着可以直接测量.值得注意的是:在未能实现材料组织三维可视化或虽已可视化但尚无法获得其定量表征数据的情况下,体视学分析可以用很小的代价获得三维组织结构的无偏的定量测量,从而成为不可缺少的、值得大力推广的显微组织定量分析与表征工具.

材料微观组织结构图像的获取、存储和传输新方法以及更好的图像处理、分析方法的不断出现和改进,体视学原理与实验技术的不断发展和普及应用,计算机硬件与软件能力的高速发展均为材料显微组织形态学由定性表征向定量表征、由二维观测向三维几何形态信息测试的发展和应用提供了难得的机遇.实验方法的高度自动化和大量显微组织定量数据的轻易获取也导致了某些先进图像分析实验方法的误用或不必要的使用提供了更多的可能性,亦不能不引起高度重视.

下一个:显微镜同轴光的效果以及应用